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Abstract
Random networks with co-existing positive and negative links are studied from
the viewpoint of the NP hard correlation clustering problem. The task is to
produce a clustering of the vertices which maximizes the number of positive
edges within clusters and the number of negative edges between clusters.
Simulated annealing, Monte Carlo renormalization and molecular dynamics
optimization are used to find the optimal cluster structure. Recently, this
problem was studied for globally coupled systems and an interesting phase-
transition-like phenomenon was predicted: in the thermodynamic limit the
relative size of the largest cluster, r, exhibits a step-like behavior as a function
of the density of positive links q (r = 0 if q < 1/2 and r = 1 if q > 1/2).
Here we prove that when considering random networks with a constant bond
density, the same phase transition is expected. A totally different result emerges
however, when networks with a fixed average number of connections per node
are considered. In such cases a nontrivial spin-glass-type behavior is found,
where the location of the critical point shifts toward q > 1/2 values. The
results also suggest that instead of the simple step-like behavior, the r(q) curve
has a more complex shape, which depends on the specific topology of the
considered network.

PACS numbers: 64.60.aq, 75.10.Nr, 05.10.Ln, 83.10.Rs

1. Introduction

Correlation clustering (CC) [1–3] is an NP hard optimization problem with potential
applications in computer science, physics, sociology, psychology, information technology
and medicine. This problem can be formulated in layman’s terms: given a set of vertices
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globally connected through randomly chosen positive or negative links the goal is to find
a clustering of them which maximizes the number of positive links within the clusters and
the number of negative links between the clusters. Based on our daily-life experience, an
intuitive sociological formulation is also possible: given a set of agents with symmetrical
positive and negative propensities toward each other, find an optimal grouping of them so that
the fixed propensities are optimally satisfied. This means that agents connected with positive
propensities (agents that ‘like’ each other) should be in the same group while agents connected
by negative propensities (agents which ‘hate’ each other) should be in different groups. One
can easily realize that a perfect solution is usually not possible, since there is no optimal
grouping which would satisfy all connections. A simple example in this sense is a ‘frustrated
triangle’: three agents interconnected by two positive links and one negative link.

For a globally coupled system the problem is similar to the well-known Sherrington–
Kirckpatrick (SK) spin-glass problem [4]. In the SK model, global interaction is assumed
between Ising-like spins. The values of these interactions are randomly chosen, both positive
and negative values being allowed, leading to an obvious frustration in the system. At T = 0
thermodynamic temperature a complex and computationally difficult task is to determine the
spin-configuration with minimal energy. Computationally CC is even harder than the SK
energy minimization, since in the SK problem one needs to divide the spins into two groups
(spins up or down), while in the CC problem the number of clusters is also a variable that has
to be optimized.

It is easy to see that the CC problem is relevant to many practical situations. It was
originally motivated by research at Whizbang labs, where learning algorithms were trained
to help various clustering tasks [5]. CC is also related to agnostic learning [6], which is an
emerging approach to efficient data mining and artificial intelligence. An important application
can be in medicine and pharmaceutics, where one needs to divide drugs into compatibility
groups. Closely related problems were considered also while studying coalition formation
phenomena in sociological systems [7–9]. The reason why the problem is interesting to
the physics community is that it resembles the infinite-range p-state Potts-glass [10–14] and
exhibits a phase transition-like phenomenon [15].

The CC problem can be formulated mathematically rigorously by introducing a K cost-
function [15] which increases by 1/N (N is the number of agents in the system) whenever
two conflicting agents are in the same cluster or when two agents with positive propensities
between them are in different clusters:

K =
∑
i<j

|Jij | + Jij

2
(1 − δσ(i)σ (j)) +

∑
i<j

|Jij | − Jij

2
δσ(i)σ (j). (1)

In (1) σ(i) denotes the cluster to which agent i belongs, the sums are for all possible pairs,
δij is the Kronecker delta symbol and Jij = ±1/N is the link between agent i and j . Simple
algebra leads to a much simpler form of the K cost function:

K = −
∑
i<j

δσ(i)σ (j)Jij +
1

2

∑
i<j

(Jij + |Jij |). (2)

Solving the CC problem is equivalent to minimizing the K cost function, which thus
represents a kind of energy (or Hamiltonian) for the system. In order to keep the analogy with
thermodynamic systems the cost function has to be extensive, and its average value should
scale linearly with system size. This is the reason why the Jij interaction parameters are taken
proportional to 1/N . One immediately realizes that for a given distribution of the links the
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second sum in (1) is constant and one has to minimize the simpler cost function

K = −
∑
i<j

δσ(i)σ (j)Jij , (3)

which resembles the Hamiltonian of the well-known infinite-range and infinite-state Potts
glass [10–14]. The Potts-glass problem is different however in many senses from the CC
problem. As discussed in a recent work [15] both the degeneracy of the states and the nature
of the disorder are different for the two problems. Crucial for us is the statistics of the Jij

interactions which determines the nature of the disorder. For the Potts glass problem the
disorder is relevant. This means that the Jij interactions are defined as

〈Jij 〉Potts = J0

N
, (�Jij )Potts = 〈

J 2
ij

〉 − 〈Jij 〉2 ∝ 1

N
. (4)

The variance scales as a function of the system size in a similar manner with the mean,
leading to a relevant disorder in the thermodynamic limit. This makes the system a complex
one and leads to the observed spin-glass-type behavior.

For the classical CC problem however, the situation is simpler in the thermodynamic
limit. To see this, let us denote the density (probability) of positive links by q (q ∈ [0, 1]).
For a fully connected system this means that Jij = +1/N with probability q and Jij = −1/N

with probability 1 − q, leading to

〈Jij 〉CC = 2q − 1

N
, (�Jij )CC = 4q(1 − q)

N2
∝ 1

N2
. (5)

The disorder is much weaker in this case, since the variance scales as 1/N2 in comparison
with the mean that scales again as 1/N . This means that the disorder scales out in the
thermodynamic limit, and as a consequence the system behaves in a much simpler manner.
As discussed in [15], in the thermodynamic limit an acceptable approximation is to replace all
Jij interactions with their mean value 〈Jij 〉CC = (2q − 1)/N . The solution of this problem is
quite simple however. Whenever 〈Jij 〉 is positive (q > 1/2) the optimal solution is to put all
agents in the same cluster and whenever 〈Jij 〉 is negative (q < 1/2) put all agents in separate
clusters.

Although the perspectives for a simple solution were quite gloomy in the beginning one
can see that the solution becomes simple in the thermodynamic limit. Before getting too
excited about this, let us remember that all practically interesting cases are for finite N values,
where the problem remains NP hard [16]. In such cases the best we can do is to consider
some numerical optimization techniques such as simulated annealing, analytical or numerical
renormalization approach or some other numerical optimization tricks [15, 17].

From the viewpoint of statistical physics, the CC problem becomes interesting due to the
phase-transition-like behavior of the optimal cluster structure as a function of the q density of
positive links. For a globally connected system this critical point is at q = 0.5. A proper order
parameter, suitable for characterizing this transition is the relative size of the largest cluster.
Rigorously, this order parameter is defined as

r(q) =
〈〈

max
(i)

{
Cx {i, q}

N

}〉
deg

〉
x

, (6)

where Cx{i, q} denotes the number of agents in cluster i, for an x realization of the disorder
(distribution of the Jij interactions) with a fixed q density of the positive links. Since the
ground state could be degenerated (a different cluster structure with the same minimum K
value might exist), first an average over all these degenerated states is considered. Then, a
second average over the quenched disorder x is performed. For finite system sizes, N, one can
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Figure 1. Analytical renormalization results for the r(q) curve in the case of a globally coupled
system.

compute the r(q) curves using different numerical or analytical approximation techniques. A
simple analytical renormalization technique, simulated annealing, extreme optimization and
a molecular dynamics approach were considered [15, 17]. All these methods yield a picture
which is consistent with our prediction for the N → ∞ thermodynamic limit. As an example
in figure 1 we present the analytical results of a simple renormalization approach (for details
see [15]).

Globally coupled networks are seldom relevant to large natural and sociological systems
[18–20]. An immediate question which arises then is to consider the CC problem on different
random graph (network) structures. In such cases the majority of links between vertices will be
absent, and the existing links will be positive with probability q and negative with probability
1 − q. Particularly, we are interested in the shape of the r(q) curves as a function of dilution
(proportion of absent links), network size and topology.

2. Optimization methods

For finite system sizes finding the optimal cluster structure in the CC problem is a complex NP
hard optimization problem. As it will be proved later, for strongly diluted random networks
even the thermodynamic limit is NP complex (the disorder remains relevant). Numerical
optimization techniques are used to study such systems and to compute the shape of the r(q)

curves.
Due to the fact that the disorder is quenched both in the distribution of the positive and

negative links and in the realization of a particular link topology, the order parameter, r, is
now an average over three different ensembles:

r(q) =
〈〈〈

max
(i)

{
Cx {i, q}

N

}〉
deg

〉
x

〉
net

. (7)

In contrast with (6), the third average here is on the particular realization of the network
(denoted by the index ‘net’). This average is calculated by generating different graphs with
similar topological properties.
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In the present work three different optimization techniques are used to determine the
shape of the r(q) curves. In the following, these methods are described and discussed in a
critical manner.

2.1. Simulated annealing

Simulated annealing is implemented in the standard fashion [21].

(i) First the random network with N vertices is build by specifying the connectivity matrix
(links).

(ii) The existing links are assigned positive or negative values (+1 or −1) randomly, respecting
the q probability of the positive links.

(iii) Initially all vertices (agents) are in different clusters and an initial Ti temperature is
considered. (The temperature scale is defined in such way that the value of the Boltzmann
constant is chosen as unity k = 1.) The value of this temperature will be consecutively
lowered during the annealing algorithm.

(iv) For a given temperature many Monte Carlo (MC) steps are considered. One MC step is
defined as N elementary simulation steps. In one elementary simulation step we randomly
choose an agent, and reassign it to a randomly chosen cluster. This change is accepted
with probability 1 if the cost function (energy) is lowered by that change (�K < 0) and
with probability exp(−�K/T ) if the cost function is increased by the change.

(v) After a desired number of MC steps are made for a temperature (usually this is of the order
of 1000), the temperature is lowered with a constant rate: Tnew = 0.98Told, until a fixed
final temperature, Tf , is reached. For the optimizations performed in the present work
we considered Ti = N/[−4log(0.8)] and Tf = 0.1. Once Tf is reached the optimization
is done and the relative size of the largest cluster is recorded.

(vi) For a given link distribution the whole optimization process is repeated several times (in
our case 10 times).

(vii) Keeping the value of q and the particular network topology we reassign the +/− links
and perform another set of optimization. This second average, which is realized over the
positive and negative links distribution is done again 10 times.

(viii) Finally, an average over the particular realization of the random net is done. This averaging
is done by generating again 10 different networks.

The final average is thus a result of a modest average over three different ensembles and it
is presumed to be independent of the particular realization of the quenched disorder. Since this
averaging is computationally time consuming, only relatively small graphs, up to N = 100
vertex points, could be studied by this method.

2.2. Stochastic renormalization

The simple analytical renormalization method used for globally coupled systems in [15]
motivated this heuristic method. The advantage of this method is that it is easy to implement
and computationally it is less demanding than simulated annealing. In consequence, much
larger graphs can be studied and surprisingly the results are in excellent agreement with the
better established results of simulated annealing.

The basic idea is that for a network with only negative links the optimal cluster structure
is known: each node should be in a different cluster. Starting from this simple configuration
the links in the graph are visited in random order and turned to positive values. After each
change we try to keep the cost function minimal by changing the cluster to which the involved
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nodes belong. The q density of positive links is monotonically increased as more and more
links are turned positive. For each q value the relative size of the largest cluster is recorded.
Repeating the procedure several times (of the order of thousands), and considering a second
average over the graph structure the same average order parameter as the one obtained in
simulated annealing (7) is computed. The detailed steps of the algorithm are the following:

(i) Generate a graph with the needed statistical properties.
(ii) Initially all links are considered negative and all N nodes are placed in different clusters.

(iii) At each simulation step we randomly choose one of the negative links (Jij ) and turn it
positive. If vertices i and j are already in the same cluster, repeat this step by choosing
another link.

(iv) We compute the cost function of the system in such a case, Kinit.
(v) The two nodes (i and j ) belonging to this link are tentatively joined in a new cluster.

All nodes belonging to clusters σ(i) and σ(j) are then joined in this cluster. The cost
function, Kfin, is computed for the new cluster structure.

(vi) If Kfin < Kin we accept the new cluster, otherwise the old cluster structure is restored.
(vii) If the new cluster structure is accepted we check all nodes belonging to this new cluster.

If a node is found so that the cost function would further decrease if this node would be in
its old cluster we put it back in its old cluster. This check is repeated until no such node
is found.

(viii) This ends one simulation step.
(ix) The relative size of the largest cluster is recorded after each completed simulation step

(this value belonging to a given q value of positive links).
(x) Steps 3–8 are repeated until all links are turned positive.

(xi) Steps 2–9 are repeated several thousands times to get a reasonable average.
(xii) We generate several new graphs with the needed statistical properties and steps (i)–(xi)

are repeated for each of them.

The method is much faster than simulated annealing, and a reasonable average can be
done on system sizes up to N = 500 nodes. For small network sizes one can compare the
results of this method with those given by simulated annealing. The good agreement between
these results offered a confidence for the applicability of this otherwise heuristic method.

2.3. Molecular dynamics approach

The molecular dynamics (MD) approach to CC is straightforward [22]. Let us consider N
particles (the nodes) placed on a ring with unit radius (R = 1), and interacting through forces
that decay exponentially as a function of the inter-particle separation angle. For characterizing
the position of the particles we use polar coordinates. Since R = 1, the position of each
particle is characterized solely by an angle �i expressed in degrees (�i ∈ [0, 360]). The force
fij acting between two agents i and j is considered to be proportional to the strength of the
Jij link

fij = CJij exp(−kxij ), (8)

where k and C are fixed positive constants, Jij = ±1 and

xij = min{|�i − �j |, 360 − |�i − �j |}. (9)

For fij > 0 the interaction forces are attractive and for fij < 0 the forces are repulsive
ones. Since each of these forces can act either in the positive or negative direction, the force
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Figure 2. Forces between the elements for the possible configurations. The values of the si (j)

coefficients are given for each case in part.

has to be oriented. This can be done simply by taking into account the relative position of the
two particles on the circle. The force fi(j) acting on particle i on behalf of particle j is

fi(j) = si(j)fij , (10)

where si(j) = −1 if xij = �i − �j or xij = 360 − (�j − �i), otherwise si(j) = +1.
Figure 2 illustrates the possible cases and the values of the si(j) coefficients. In each time
moment, the resultant force, Fi , acting on each agent is computed:

Fi =
∑

{j},j �=i

fi(j). (11)

Agents will follow an over-damped motion with parallel update [17, 22] of their position.
At each dt time step a di = Fi dt displacement is considered for each agent. Particles are
considered to be point-like and transparent, they can freely pierce through each other and an
arbitrary number of them can occupy the same position in space. Due to the presence of
the attractive and repulsive forces the system is in general strongly frustrated and the energy
landscape is complex with several deep local minima. As a result of the simple molecular
dynamics approach the system relaxes to one of its local equilibria, which of course might
not be the optimal (global) one. The system is considered to be relaxed when the maximal
displacement of the agents is less than a fixed value (considered here as 0.01◦). In order to
make the local minimum unstable, after relaxation random Frand(i) forces are applied on each
particle. The strength of these forces is uniformly distributed on an Frand(i) ∈ [−F max

rand , F max
rand

]
interval. The purpose of this random force is to shake up the system and to make the local
equilibrium configurations unstable. Repeating the relaxation procedure many times, the
desire is to freeze the system in the global energy minimum. After one hundred of such
relaxation steps we assume that the global minimum is reached and at this point the order
parameter is computed. The optimization procedure applied here is similar in some sense with
simulated annealing, random forces replacing the effect of the heat bath. The main difference
relative to simulated annealing is that in the present algorithm the noise is not constantly
applied and the intensity of the noise is kept constant.
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The result of the molecular dynamics optimization is a spatial configuration of the agents
on the unit circle. In order to determine the needed order parameter, r, one still has to identify
the clusters. This is done in the following manner. We choose a small ψ(1) = 1 angle. Rows
of consecutive neighboring agents separated by an angle smaller than ψ(1) are assigned to the
same cluster. We check whether the elements of the clusters are connected through the original
network structure. If not, we break these clusters in their largest connected components. We
calculate the cost function, K(1), for the obtained clustering, and increase ψ(i) with a dψ = 1
step. For ψ(i +1) = ψ(i)+dψ we repeat the same clustering procedure and calculate K(i +1).
The value of ψ is consecutively increased until ψ = 180 is reached. The minimal K(i) value
will determine the optimal cluster structure.

3. Considered networks

Two categories of networks are considered: (i) completely random Erd ′′os–Rényi type graphs
[23, 24] and (ii) scale-free networks [18, 19]. Since all the previously discussed stochastic
optimization methods are computationally time consuming and a complicated average is
necessary, only relatively modest networks (up to N = 500 nodes) could be studied.

As a first step, for each generated graph one has to check whether it is connected, i.e. it does
not fall in non-connected components. In case the graph splits in non-connected components
a new graph has to be generated, since the solution of the CC problem is obviously different
on a non-connected graph. Before presenting the results of the optimization methods on finite
graphs let us discuss what would one expect in the thermodynamic limit, and how these graphs
can be generated for a computational study.

3.1. Randomly diluted networks

Erd ′′os–Rényi networks are simple random graphs on which many exact results are known [25].
A method to generate such graphs is by randomly diluting a fully connected graph: all links
are visited and taken out with a fixed (1 − p) probability. By this procedure one obtains a
random graph with pN(N − 1)/2 links on average and with a normal degree distribution.
For studying the CC problem the remaining links will be considered +1 with a q probability
and −1 with (1 − q) probability. For a finite dilution probability one would expect again a
simple solution for the CC problem. Similarly with the case of globally coupled graphs the
disorder is irrelevant in the thermodynamic limit. To prove this, let us view the diluted graphs
as fully connected ones with Sij links, Sij = 0 with 1 − p probability and Sij = ±J �= 0 with
p probability (Sij = J > 0 with probability q and Sij = −J < 0 with probability 1 − q). In
order to have the K cost-function extensive, its average value, 〈K〉, should scale linearly with
the size of the system, N:

〈K〉 = JN(N − 1)p(2q − 1)/2 ∝ N. (12)

Now, to satisfy this scaling one needs to choose J ∝ (1/N). Taking the proportionality factor
1, it results

〈Sij 〉ER
CC = p(2q − 1)

N
∝ 1

N
, (�Sij )

ER
CC = p − p2(2q − 1)2

N2
∝ 1

N2
. (13)

Since the variance converges quicker to zero than the average, the disorder behaves as
in the case of the globally coupled systems, i.e. it scales out in the thermodynamic limit.
In this limit the system is equivalent to a system having all links 〈Sij 〉 = Jp(2q − 1) and
consecutively the same phase transition is expected at qc = 0.5 as in the case of the globally
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coupled systems. The critical point is thus independent of the considered dilution, assuming
of course that p is finite.

3.2. Random networks with fixed average degree

Randomly diluted complete graphs with fixed dilution densities are still too dense for giving a
non-trivial solution of the CC problem in the thermodynamic limit. Based on this observation,
a further possibility is to consider Erd ′′os–Rényi-type random graphs where the average degree
(average number of links per node), 〈k〉, is fixed. This would result in infinite dilution for
N → ∞ since the dilution is increased as the system size increases. The average value of
the cost function scales as K = JN〈k〉/2, and will behave like an extensive thermodynamic
function if we choose J = C. Taking C = 1, the network can be viewed again as a complete
graph with N nodes and N(N − 1)/2 links (Sij = 0,±1), obeying the following statistics:

〈Sij 〉ER〈k〉
CC = 〈k〉(2q − 1)

N − 1
∝ 1

N
,

(�Sij )
ER〈k〉
CC = 2〈k〉

N − 1
− 〈k〉2(2q − 1)2

(N − 1)2
∝ 1

N
.

(14)

The system has a relevant disorder in the thermodynamic limit and behaves like a genuine
spin glass. One expects thus that the thermodynamic limit is already complex. Monte Carlo
optimization techniques can offer some hints for the behavior of the r order parameter as a
function of q.

There are also some special cases where the r order parameter can be exactly computed.
An example for this is the case of tree-like graphs. For such graphs the clusters are simple,
and one can obtain the clusters by simply removing the −1 bonds. It is known that at the
critical dilution (before falling apart in non-connected sub-graphs) the Erd ′′os–Rényi networks
become tree-like, and the average degree of a node is constant in the thermodynamic limit. It
is also trivial that for q = 1 we have r = 1. Now, one can realize that if any finite fraction
of the bonds will become negative (i.e., q < 1) the order parameter will become less than 1
(r < 1). This suggests that the r(q) curves will not have a step-like form for this critically
diluted graphs, and contrary to the picture known for globally connected networks the r = 1
order parameter is reached only in the q → 1 limit.

3.3. Scale-free networks with fixed average degree

These networks are sometimes known as Barabási–Albert networks [18, 19]. Their degree
distribution follows power law, and hence their name as scale-free networks. As discussed
in several recent works, these networks are characteristic for many real biological and social
systems. In the thermodynamic limit scale-free networks are infinitely diluted complete
graphs since their average number of links per node is finite. We expect thus that their
statistical properties regarding the CC problem could be again different from those expected
for simple Erd ′′os–Rényi networks. There are several methods by which one can generate
such networks. The most well-known one is based on a continuous growth governed by
preferential attachment [26]. The linear preferential attachment leads to scale-free networks
with a power-law exponent −3 for the degree distribution and a fixed average degree, 〈k〉.
For the small size networks (up to several hundreds of nodes) that can be studied by our
optimization techniques the network generation method based on preferential attachment is
not suitable since the degree distribution will have large deviations from the expected power
law. In such cases the less popular configuration model [27, 28] is used to generate the desired
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graphs. The configuration model can generate links between a set of nodes, leading to the
n(k) degree distribution with a fixed form:

n(k) = αk−γ . (15)

Parameter γ is the power-law exponent (γ ∈ (0, 2)) and parameter α governs the number
of nodes, N, in the graph. In order to get connected graphs easier it is desirable to have
γ ∈ (0, 2). For γ > 2 most of the generated networks will be disconnected graphs. The
advantage of the configuration model is that it generates the desired degree distribution already
for relatively small networks.

From the viewpoint of the CC problem we are interested to generate networks with fixed
average degree, in order to complete the results obtained in the case of simple Erd ′′os–Rényi
type random graphs. In order to get the same 〈k〉 average degree for different system sizes,
both the α and γ parameter values have to be continuously adjusted. The main steps of this
graph generation method are the following:

(i) The α and γ parameters are fixed,
(ii) The n(k) (k = 1, 2, . . . , kmax) values are calculated after (15) by truncating them to

integer values. The last k value for which n(k) � 1, will be kmax. All other n(k) values
will be considered as 0.

(iii) The number of nodes, N, and the total number of links, W , in the system are calculated:

N =
kmax∑
k=1

n(k), W = 1

2

kmax∑
k=1

n(k)k. (16)

(iv) The α and γ parameters are changed so that the total number of nodes and the average
degree becomes the desired one. This is done by a small exhaustive searching algorithm.

(v) For each k = 1, 2, . . . , kmax value we assign n(k) nodes that will be the starting point
of k links. The endpoints of the links are not yet specified. The number of unspecified
end-points is memorized.

(vi) If W is odd, we neglect the link of a node with degree 1, since the total number of such
‘floating’ links should be even!

(vii) Finally, we connect the nodes by connecting the links with free end points following the
procedure from below.

(a) Two links with free endpoints are randomly selected. If the nodes to which these
belong are already connected, another pair is randomly generated.

(b) We connect the nodes to which the two selected half-links belong and the number of
links with free endpoints is decreased by 2.

(c) continue from step (vii)a until all free end-point links are exhausted.

(viii) Check if the obtained net is a connected one. If not, start again the whole procedure.

There are of course other more sophisticated algorithms which would further improve the
scale-free network generation method. One possibility would be to redistribute the fractional
parts of the calculated n(k) values, improving the scale-free nature of the networks. For the
sake of computational simplicity, in the present study we will use only the above presented
simple configuration model.

For scale-free networks with fixed average degree, one would expect in the thermodynamic
limit a non-vanishing disorder from the viewpoint of the CC problem. Equation (14) obtained
for randomly diluted complete graphs with a fixed average degree holds in this case also. A
nontrivial shape for the r(q) curve is expected, and numerical optimization techniques will be
used to study finite graphs.
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Figure 3. Numerical optimization results for the r(q) curves on randomly diluted networks. For
the graphs in the first row (figures 3(a)–(c)) the density of bonds is p = 0.95, in the second row
(figures 3(d)–(f)) this density is p = 0.2. The curves in the first column are generated by the
simulated annealing approximation, the curves from the second column by a MC renormalization
method, and the curves from the third column are obtained with the MD optimization technique.
Different network sizes are considered: N = 30 (dotted line), N = 50 (dashed line) and N = 100
(continuous line).

4. Numerical results

Three optimization methods (briefly discussed in section 2) were used to study the CC problem
on networks: simulated annealing, stochastic renormalization and a molecular dynamics
approach. Results obtained by these methods are in agreement with each other and support the
previously discussed analytical prediction for the thermodynamic limit. Due to the fact that
these methods are computationally time consuming and a complicated average has to be done
for computing the r order parameter (7), only graphs with relatively modest sizes could be
considered. Simulated annealing is the most time-consuming one, and with this method only
networks up to 100 nodes could be studied. Larger networks (up to 500 nodes) were studied
by the stochastic renormalization and the MD approach. In general, the previously discussed
optimization methods were applied on many networks with widely different sizes. In the
following however, results for only three different network sizes will be presented, otherwise
the graphs would look overcrowded.

In figure 3 we present results for the r(q) curves on randomly diluted networks considering
two different dilution rates. Different rows are for different dilutions. In the first row
(figures 3(a)–(c)) p = 0.95, while in the second row (figures 3(d)–(f)) p = 0.2. The graphs in
different columns correspond to the different optimization methods. In the first column
(figures 3(a)and (d)) simulated annealing results, in the second column (figures 3(b)and
(e)) stochastic renormalization results and in the third column MD optimization results
(figures 3(c) and (f)) are presented. For each method and dilution several different system sizes
(N = 100, 50 and 30) were considered. The curves for the MC renormalization technique is
smoother due to the fact that this method is faster and consecutively a much smaller step for
the variation of q was considered.
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Figure 4. Numerical optimization results for the r(q) curves on randomly diluted networks. For
the curves in the first row (figures 4(a)–(c)) the average degree of the nodes is 〈k〉 = 4, for the
curves in the second row (figures 4(d)–(f)) the average degree is 〈k〉 = 10. The curves in the
first column are generated by the simulated annealing approximation; the curves from the second
column by a MC renormalization method and the graphs from the third column are obtained with
the MD optimization technique. Results for different network sizes are plotted: N = 30 (dotted
line), N = 50 (dashed line) and N = 100 (continuous line).

In the case of the p density of bonds being kept constant, the r(q) curves for increasing
system sizes (figures 3(a)–(f)) suggest that in the thermodynamic limit (N → ∞) the same
phase-transition is expected as in the globally coupled graphs: r = 0 if q < 0.5 and r = 1 for
q > 0.5. This is the result suggested in section 3.1 by the simple scaling argument (13). The
trend of the curves in figure 3 is pretty similar to those observed in [15] for globally connected
systems: as the size of the system increases, the inflection point converges toward q = 0.5.
This trend is more evident for p = 0.95. For the strong dilution case (p = 0.2) much bigger
system sizes are necessary to have the inflection point close to q = 0.5.

Results for finite, randomly diluted networks can be viewed in another perspective, leading
to a completely different picture in the thermodynamic limit. In figure 4 we plot the r(q)

curves for randomly diluted networks with fixed average degree 〈k〉. This means that for
increasing system size the density of bonds, p, decreases, and in the thermodynamic limit
p → 0. Figures 4(a)–(c) are for 〈k〉 = 4 and figures 4(d)–(f) are for 〈k〉 = 10. The graphs in
the first column (figures 4(a) and (d)) were obtained by simulated annealing, the graphs in the
second column (figures 4(b) and (e)) were obtained by an MC renormalization technique and
the graphs in the third column (figures 4(c) and (f)) were generated by the MD optimization
technique. For each case systems with three different sizes are presented: N = 100, 50
and 30.

For increasing system sizes the r(q) curves exhibit a completely different trend. As has
been discussed in section 3.1, in such a case one would expect in the thermodynamic limit
a complex spin-glass-type transition, since (14) suggests that the disorder remains relevant.
Numerical results confirm this picture. The location of the qc critical point clearly shifts
toward qc > 0.5 values and seemingly the critical point depends on the 〈k〉 value. Moreover,
the curves in figure 4 suggest a completely different scaling trend than the curves in figure 3.
As one would naturally expect, for smaller 〈k〉 values (more diluted systems) the difference

12



J. Phys. A: Math. Theor. 42 (2009) 345003 Z Néda et al
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Figure 5. Numerical optimization results for the r(q) curves on scale-free networks. For the
graphs in the first row (figures 4(a)–(c)) the average degree of the nodes is 〈k〉 = 4 and for
the graphs in the second row (figures 4(d)–(f)) the average degree is 〈k〉 = 10. The curves in
the first column are generated by the simulated annealing approximation; the curves from the
second column by a MC renormalization method and the curves from the third column are
obtained with the MD optimization technique. Different network sizes are considered, in the
first row N = 44 (dotted line), N = 75 (dashed line) and N = 118 (continuous line); in the second
row: N = 57 (dotted line), N = 99 (dashed line) and N = 140 (continuous line).

Table 1. The parameters of the configuration model for different N and 〈k〉 values.

N 〈k〉 α γ

118 4 46.0625 1.3
75 4 27.9383 1.2
44 4 13.5991 1.0

140 10 27.9383 0.9
99 10 17.2878 0.8
57 10 7.6141 0.6

from the globally coupled case is more obvious. The trend expected in the thermodynamic
limit is obviously different from the trivial step-like behavior at qc = 0.5. Finite-size scaling
for 〈k〉 = 4 suggests that in the q → 1 limit the curves are nicely overlapping and suggests
that for q < 1 one obtains r < 1, as it would be expected in the critical dilution limit.

Finally, numerical results for the r(q) curves on scale-free networks were obtained.
The configuration model was used to generate scale-free networks of various sizes and
with various degree-distribution exponents, γ . In order to have networks with different
sizes and fixed average degree one had to continuously adjust the γ value. Networks with
N = 140, 118, 99, 75, 57 and 44 nodes and with two different 〈k〉 values were considered:
〈k〉 = 4 and 〈k〉 = 10 (similarly to the case of randomly diluted networks). In table 1 the γ

and α values used in generating the studied networks is given.
Results of the numerical optimizations are plotted in figure 5. In the first row

(figures 5(a)–(c)) results for 〈k〉 = 4, and in the second row (figures 5(d)–(f)) the results
for 〈k〉 = 10 are presented. The curves in the first column (figures 5(a) and (d)) present
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Figure 6. Simulated annealing results for the r(q) curves on randomly diluted and scale-free
networks with fixed 〈k〉 = 10 average degree. For each network class two different system sizes
are considered as illustrated in the legend. The figure on the right is the magnification of the region
inside the box.

results obtained by simulated annealing, the second column (figures 5(b) and (e)) shows the
results obtained by MC renormalization and the third column (figures 5(c) and (f)) is for the
results obtained by the MD optimization technique. For each method and 〈k〉 value several
system sizes are considered as illustrated in table 1.

The trend of the r(q) curves in figure 5 is similar to those obtained for randomly diluted
networks with fixed 〈k〉 value (figure 4) and suggest a similar complex behavior in the
thermodynamic limit. Although the shape of the r(q) curves in figure 4 and figure 5 are
similar to each other, plotting them together reveals important differences generated by their
specific topology. This is done in figure 6, where the results obtained by simulated annealing
are compared for randomly diluted and scale-free networks with 〈k〉 = 10 average degree.

5. Conclusions

The CC problem on randomly diluted and scale-free networks was studied. A simple analytical
argument based on the scaling properties of the average value and variance of the links strength
(equations (13) and (14)) suggests that in the thermodynamic limit a different complexity class
is expected for networks where the bond density, p, is finite and for infinitely diluted graphs
(p = 0), where the average degree, 〈k〉, is fixed. For networks with fixed bond density the
disorder is irrelevant in the thermodynamic limit and in this limit the same trivial solution is
valid as in the case of globally coupled graphs [15, 17]: for the q < 0.5 probability of positive
links all nodes have to be in separate clusters leading to r = 0, while for q > 0.5 all nodes
have to be in the same cluster (r = 1). Contrary to this simple result the problem becomes
complex when the average links per node are fixed, meaning in the thermodynamic limit an
infinitely strong dilution of the complete graph. In such cases the disorder in the system
remains relevant and optimization is a complex NP hard task even in the thermodynamic limit.
This simple analytical prediction is verified in the present study by three different numerical
optimization approaches on finite networks. The shape of the r(q) curves in the CC problem
was numerically studied by simulated annealing, MC renormalization and an MD optimization
approach. The results obtained by these methods are all in good agreement with each other
and support the predictions of scaling arguments for the thermodynamic limit. This suggests
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that the CC problem becomes a complex one even for large networks when the average degree
is kept constant. Since scale-free networks are in such a category [18, 19], we expect that the
solution of the CC problem in practically interesting social and biological systems remains a
complex spin-glass-type optimization problem even for very large networks.
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